
Energy approach to rivalry dynamics, soliton stability, and pattern formation
in neuronal networks

P. N. Loxley1,2 and P. A. Robinson1,2,3

1School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
2Brain Dynamics Center, Westmead Millennium Institute, Westmead Hospital
and The University of Sydney, Westmead, New South Wales 2145, Australia

3Faculty of Medicine, The University of Sydney, Sydney, New South Wales 2006, Australia
�Received 8 June 2007; revised manuscript received 25 July 2007; published 31 October 2007�

Hopfield’s Lyapunov function is used to view the stability and topology of equilibria in neuronal networks
for visual rivalry and pattern formation. For two neural populations with reciprocal inhibition and slow adap-
tation, the dynamics of neural activity is found to include a pair of limit cycles: one for oscillations between
states where one population has high activity and the other has low activity, as in rivalry, and one for
oscillations between states where both populations have the same activity. Hopfield’s Lyapunov function is
used to find the dynamical mechanism for oscillations and the basin of attraction of each limit cycle. For a
spatially continuous population with lateral inhibition, stable equilibria are found for local regions of high
activity �solitons� and for bound states of two or more solitons. Bound states become stable when moving two
solitons together minimizes the Lyapunov function, a result of decreasing activity in regions between peaks of
high activity when the firing rate is described by a sigmoid function. Lowering the barrier to soliton formation
leads to a pattern-forming instability, and a nonlinear solution to the dynamical equations is found to be given
by a soliton lattice, which is completely characterized by the soliton width and the spacing between neighbor-
ing solitons. Fluctuations due to noise create lattice vacancies analogous to point defects in crystals, leading to
activity which is spatially inhomogeneous.
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I. INTRODUCTION

Dynamical models of interacting neural populations pro-
posed originally to describe key aspects of brain activity
�1,2� and cortical map development �3,4� have been used
more recently to successfully uncover important features of
binocular rivalry �5–7�, visual attention �8�, visual hallucina-
tions �9–11�, and development of orientation preference in
the primary visual cortex �4,12�. The main assumptions in
these models include details of the connections between dif-
ferent neural populations. In particular, networks with recur-
rent connections are known to lead to a range of multistable
phenomena, including hysteresis, winner-take-all dynamics,
and the formation of spatiotemporal patterns �for a review,
see Ref. �13��.

Although model networks represent a vast simplification
of reality, they can still be difficult to gain insight from. One
reason is that networks which are computationally useful, or
which display a range of dynamical behavior, often also con-
tain a significant number of equilibria. This is seen in artifi-
cial neural networks for associative memory, where retriev-
ing a memory from incomplete information is equivalent to
the dynamics of moving towards a single attractor in a space
of states containing many attractors, some of which are
analogous to spin glass states �14,15�. In addition, biologi-
cally motivated neural networks, often called neuronal net-
works �13�, have equilibria that change in stability over time
due to processes such as synaptic plasticity �16�, spike-rate
adaptation �8,17,18�, and time-varying input stimuli �7�.
Such dynamical features further complicate analysis.

The purpose of this work is to present an energy approach
to understanding the dynamics of activity in neuronal net-

works. The approach allows the stability and topology of
equilibria to be viewed—including the basins of attraction,
basin boundaries, etc.—in terms of the maxima, minima, and
saddle points of an appropriate energy surface. This provides
a particularly intuitive way to understand the dynamics and
uncovers new results which would be more difficult to show
using alternative methods. In order to illustrate this, we con-
sider models for visual rivalry and neuronal pattern forma-
tion. The energy surface is constructed using Hopfield’s
Lyapunov function �19�, which is analogous to the potential
energy function of a nonconservative system and is mini-
mized by all stable equilibria of the dynamical equations.
Although Hopfield’s Lyapunov function is only valid for net-
works with symmetric connections, we show how it can be
used to understand behavior in networks with asymmetric
connections when a clear separation of dynamical time scales
exists.

An energy approach to understanding behavior in neu-
ronal networks has several advantages over the usual phase-
plane methods for nonlinear differential equations. These
typically involve constructing nullclines—that is, curves
along which the time rate of change of a particular variable is
zero—and finding where they intersect to give an equilib-
rium, then determining local stability from consideration of
small deviations from each equilibrium. Equilibria and equi-
librium stability can be seen directly from an energy surface.
In addition, the energy surface shows the basins of attraction,
allowing global dynamics to be visualized in a manner simi-
lar to predicting the motion of a particle on a potential en-
ergy surface in the limit of large friction. This is used in Sec.
III to find the dynamical mechanism for limit-cycle oscilla-
tions in the activity of two interacting neural populations and
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generalizes the energy approach of Ref. �18� for a single
population. It is also used to predict when such oscillations
may take place.

Another advantage of an energy approach is that it en-
ables the use of variational techniques for finding equilibria.
This is illustrated using collective coordinates, developed in
condensed matter physics �20� and quantum field theory �21�
for treating the particlelike nature of solitons. In Sec. IV,
stable equilibria are found for spatially localized regions of
high neural activity, also called bumps �17,22,23� or solitary
peaks �13�. We use the term soliton here, as it is more widely
recognized, and the stable equilibria are spatially localized
solutions of a nonlinear field equation �21�. In systems con-
taining solitons only a few degrees of freedom may be im-
portant. For example, during interactions between solitons
there may be little change in the soliton shape, but a large
change in its position, the separation of two or more solitons,
or the position of the “center of mass” of a collection of
solitons �20�. It is often then possible to derive a variational
energy depending only on these coordinates, such that its
maxima, minima, and saddle points give equilibria of the
system.

A final advantage of an energy approach is that the effects
of fluctuations due to random noise can be investigated using
analogies with statistical mechanics �cf. Ref. �15��. In Sec.
IV C, we show how noise fluctuations can decrease long-
range order in patterned neural activity, generating activity
which is spatially inhomogeneous. The general model and
corresponding Lyapunov function are described in Sec. II. In
Sec. III, we include reciprocal inhibition and slow adaptation
to yield a simple model of visual rivalry. Two alternative
mechanisms for oscillations are found in Sec. III A, and
limit-cycle behavior is described in Sec. III B. We consider a
spatially continuous network with lateral inhibition in Sec.
IV and investigate pattern formation by using collective co-
ordinates and constructing a variational energy. Equilibria
are found for a single soliton in Sec. IV A and for soliton
interactions in Sec. IV B. A soliton lattice is treated in Sec.
IV C. The main results of this approach, as well as its advan-
tages and limitations, are summarized in Sec. V. Alternative
energy approaches are also discussed.

II. MODEL AND HOPFIELD ENERGY

The model we consider describes activity aggregated over
many neurons. The activity ui of a neural population i �as
given by the mean cell-body potential� depends on the activ-
ity of other neural populations, j, through a weight Wij rep-
resenting the mean synaptic connectivity, and on the level of
input stimuli hi. Connections are termed excitatory if Wij
�0 and inhibitory if Wij �0. The mean-field dynamical
equation is given by

1

�i

dui

dt
= − ui + �

j

WijS�uj� + hi, �1�

where S�uj� is the spiking rate of population j, �i
−1 is the time

scale over which action potential spikes are smoothed by the
synapses and dendrites of population i, and the sum is over

all neural populations �1,2,13,14,24�. Assuming a distribu-
tion of firing thresholds as in Ref. �24�, with mean �i, and
standard deviation �i� /�3, the firing rate function is chosen
to have the form

S�ui� =
1

1 + exp�− �ui − �i�/�i�
, �2�

which increases from 0 to 1 as ui crosses the mean firing
threshold in the step function limit �→0; otherwise, the
transition is more gradual. Equilibria of Eq. �1� satisfy
dui /dt=0.

A Lyapunov function E�ui� exists for Eq. �1� when con-
nections are symmetric: Wij =Wji, as originally shown by
Hopfield �19�. This function is a generalization of the poten-
tial energy function of a nonconservative system and shares
the important property that dE /dt�0 for every solution to
Eq. �1� with Wij =Wji. That is, all trajectories go “downhill”
on the energy surface, although not necessarily taking the
path of steepest descent, until reaching a minimum of E. This
minimum corresponds to a stable equilibrium of Eq. �1� and
is often termed a fixed-point attractor. The Lyapunov func-
tion corresponding to Eq. �1� with Wij =Wji is given by

E = −
1

2�
i,j

S�ui�WijS�uj� + �
i
�

0

S�ui�

S−1�V�dV − �
i

hiS�ui� .

�3�

For the choice of firing rate function in Eq. �2�, we find

�
0

S�ui�

S−1�V�dV = �iS�ui� + �i�1 − S�ui��ln�1 − S�ui��

+ �iS�ui�ln S�ui� . �4�

The equilibria of Eq. �1� are the critical points of E—that is,
its maxima, minima, and saddle points. For N populations
there will be a maximum of 3N critical points when the firing
rate has the form of a sigmoid function as in Eq. �2�. The
minima of E are stable equilibria, as mentioned, while the
maxima and saddle points are unstable equilibria. The advan-
tage of Eq. �3� is that the stability of equilibria and the to-
pology of the dynamics can be directly seen from the curva-
ture of E. At a critical point of E the curvature is given by the
matrix of second derivatives:

�2E

�ui�uj
= � j�	ij − �iWij� , �5�

where �i=S��ui� is evaluated at the critical point. Consider-
ing small deviations 	ui from a critical point allows Eq. �3�
to be approximated as

E � E0 +
1

2�
i


i	ui
2, �6�

where E0 is the value of E at the critical point and 
i are
eigenvalues of the matrix given by Eq. �5�. It is clear from
Eq. �6� that the signs of these eigenvalues determine the type
of critical point of E: When 
i�0 for all i, the critical point
is a minimum; when 
i�0 for all i, it is a maximum; and
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when 
i�0 for some i, and 
i�0 for others, the critical
point is a saddle point.

III. VISUAL RIVALRY

During experiments on binocular rivalry, a separate image
is presented to each eye. When these images are conflicting
the visual system is thrown into oscillations, so that only one
of the images is perceived at any time, and this perception
continually alternates between the two images �5–7�. Here,
we present a simple model of rivalry that contains the essen-
tial elements from previous models �5–8,25�. Our purpose is
to show how an energy approach can be used to understand
rivalry. In particular, we use it to find the dynamical mecha-
nism responsible for rivalry oscillations.

Consider two neural populations �for example, left-eye
and right-eye monocular neurons in the primary visual cor-
tex� with activities u1 and u2, respectively. A simple neuronal
network which includes adaptation is given by the set of
equations

1

�

du1

dt
= − u1 + W11S�u1� + W12S�u2� + h1, �7�

1

�

du2

dt
= − u2 + W21S�u1� + W22S�u2� + h2, �8�

1

�

d�1

dt
= − �1 + �u1, �9�

1

�

d�2

dt
= − �2 + �u2, �10�

where h1 and h2 are inputs from the left and right eyes, for
example; �−1 is the time scale of adaptation; � gives the
strength of negative feedback due to adaptation; and the S�ui�
depend on the �i through Eq. �2�. The network following
from Eqs. �7�–�10� is asymmetric. Connections in Eqs. �7�
and �8� are symmetric when Wij =Wji; however, in Eqs.
�7�–�10� the coupling between ui and �i breaks this symme-
try. Lyapunov functions usually do not exist for asymmetric
networks �26�, and limit cycles become possible when
asymptotic dynamics is not restricted to a set of stable equi-
libria.

A. Oscillation mechanisms

For slow adaptation ��, and a clear separation of time
scales exists in Eqs. �7�–�10�. Over the fast time scale �−1,
the variables �1 and �2 are approximately constant, and the
dynamics reduces to Eqs. �7� and �8�. The fast dynamics can
then be characterized using Hopfield’s Lyapunov function
when W12=W21, and solution trajectories go downhill on an
energy surface that varies slowly in time, depending on
which trajectory is taken. A qualitative dynamical description
is then possible by making use of both the topology of the
energy surface and the dynamical behavior of Eqs. �9� and
�10�. Similar approaches can also be applied to any neuronal

network with short-time-scale dynamics that matches a
known Lyapunov function.

With no interaction between two neural populations �but
allowing for recurrent excitation within each population�,
W12=W21=0, and the energy surface following from Eqs. �3�
and �4� is shown in Fig. 1�a�. There are nine critical points of
E in this figure: a central maximum, four surrounding
minima, and four saddle points, one separating each pair of
minima. The four minima are stable equilibria, where either
both populations have the same activity �top-right and
bottom-left minimums� or one population is at high activity
and the other is at low activity �top-left and bottom-right
minima�. The maximum and saddles points are unstable
equilibria. It is possible to keep track of the number, location,
and stability of equilibria by seeing how the energy surface
changes as the parameters are varied continuously. Solution
trajectories of Eqs. �7� and �8� can also be visualized by
considering the basins of attraction and basin boundaries
formed by the critical points of E.

Reciprocal inhibition is a key element in rivalry and im-
plies W12=W21�0 when connections are symmetric. The re-
sulting energy surface is shown in Fig. 1�b�, where it is seen
that the minimum corresponding to the stable equilibrium
with both populations at high activity has merged with the
maximum and two neighboring saddles points, following a
saddle-node bifurcation. Now only one population can be in
a stable high-activity equilibrium at any time—a key feature
of rivalry. Spike-rate adaptation causes a neural population to
switch from high activity to low activity after a characteristic
period of time, generally tens of milliseconds to several sec-
onds in the visual system �6–8�. This is included by allowing
�1 and �2 to vary over the slow time scale �−1 according to
Eqs. �9� and �10�. The energy surface then evolves slowly in
time, and two different dynamical mechanisms for oscilla-
tions become possible, depending on the initial state.

1. Rivalry oscillations

Starting at the top-left minimum of Fig. 1, corresponding
to population 1 at low activity and population 2 at high ac-
tivity, leads to an increase in �1 via Eq. �9� and a decrease in
�2 via Eq. �10�. After a time �−1, the asymmetry in �1 and �2
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FIG. 1. Energy from Eq. �3� versus u1 and u2 for W11=W22=5,
�1=�2=2.5, �1=�2=1, and h1=h2=0. In �a�, there is a central
maximum �light circle�, four surrounding minima �dark circles�, and
four saddles points �S� when W12=W21=0. In �b�, there are three
minima and two saddles points when W12=W21=−0.3.
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results in the disappearance of the occupied top-left mini-
mum through a saddle-node bifurcation, as shown in Fig.
2�a�, followed by downhill motion towards the bottom-left
minimum where both populations are at low activity. As the
asymmetry continues to increase, the bottom-left minimum
also vanishes, as shown in Fig. 2�b�, followed by downhill
motion towards the remaining minimum at the bottom-right,
where population 1 is at high activity and population 2 is at
low activity. The motion is downhill in both cases because
the height of an energy minimum can increase during a
saddle-node bifurcation. A similar sequence of steps then re-
turns the system to the top-left minimum. This mechanism
gives rivalry oscillations, as the activities oscillate between
states where one population is at high activity and the other
is at low activity �out-of-phase oscillations�. In Fig. 2, it is
seen that going via the bottom-left minimum can lead to an
L-shaped trajectory for rivalry oscillations.

2. In-phase oscillations

Starting at the bottom-left minimum of Fig. 1, where both
populations are at low activity, and requiring that �1=�2 ini-
tially causes both �1 and �2 to decrease at exactly the same
rate. Now there is no asymmetry between �1 and �2 or be-
tween u1 and u2. After a time �−1, the bottom-left minimum
vanishes through a saddle-node bifurcation with the maxi-
mum and two neighboring saddles, as shown in Fig. 3�a�,
followed by downhill motion towards the top-right minimum
where both populations are at high activity. Following this,
�1 and �2 both begin to increase and the top-right minimum
vanishes after another �−1 period, as in Fig. 3�b�. Motion is
then downhill towards the bottom-left minimum where both
populations start at low activity again. This mechanism gives
oscillations which do not correspond to rivalry, as the activ-
ity oscillates between states where both populations have the
same activity �in-phase oscillations�. The lack of asymmetry
means this trajectory does not go via an intermediate-energy
minimum as is possible in the rivalry case, but always fol-
lows a straight line between the top-right and bottom-left
minima.

B. Limit-cycle behavior

The energy given by Eq. �3� can also be used to predict
when oscillations take place. To simplify analysis we con-

sider a network with a high degree of symmetry: W11=W22,
W12=W21, and h1=h2. Equilibria of Eqs. �7�–�10� are then
given by u1=u2=u0 and �1=�2=�0, where u0 and �0 are
intersections of the nullclines of Eqs. �7�–�10�,

� = u + � ln	W11 + W12

u − h
− 1
 , �11�

� = �u , �12�

and where h=h1=h2 has been defined. This is shown in Fig.
4�a� for �=2.5. The line given by Eq. �12� �dashed line�
intersects the curve given by Eq. �11� �solid line� exactly
once at �u ,��= �u0 ,�0�, corresponding to a single equilibrium
of Eqs. �7�–�10�. When ��, the variables �1 and �2 remain
approximately constant over the characteristic time �−1 and
the fast dynamics depends only on Eqs. �7� and �8�. Upon
using �1=�2=�0 in Eqs. �3� and �4�, the equilibrium stability
can be determined from the curvature of the E surface at
u1=u2=u0.

The energy surface given by Eqs. �3� and �4� with �1
=�2=�0 is plotted in Fig. 4�b�, and the position of the equi-
librium at u1=u2=u0 implies that the equilibrium is a mini-
mum of E and is therefore stable. This is confirmed from the
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FIG. 2. Energy from Eq. �3� versus u1 and u2, and a trajectory
solving Eqs. �7� and �8� �arrows�, for different values of �i. In �a�,
the top-left minimum vanishes when �1=2.4 and �2=2.6. In �b�, the
bottom-left minimum vanishes when �1=2.3 and �2=2.7.
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FIG. 3. Energy from Eq. �3� versus u1 and u2, and a trajectory
solving Eqs. �7� and �8� �arrows�, for different values of �i. In �a�,
the bottom-left minimum vanishes when �1=�2=2.25. In �b�, the
top-right minimum vanishes when �1=�2=2.45.
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FIG. 4. Dynamics of Eqs. �7�–�10� with W11=W22=5, W12

=W21=−0.3, h1=h2=0, �1=�2=1, �=2.5, �−1=20 ms, and �−1

=900 ms. In �a�, the intersection of Eq. �11� �solid line� and Eq.
�12� �dashed line� results in a single equilibrium at �u0 ,�0�. In �b�, a
plot of Eq. �3� with �1=�2=�0 yields a minimum at u1=u2=u0. A
trajectory solving Eqs. �7�–�10� is also shown �arrow�.
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trajectory of a point evolving under Eqs. �7�–�10�, which is
also shown in Fig. 4�b�.

Changing � changes the slope of the dashed line in Fig.
4�a� and yields new values for u0 and �0. This is shown in
Fig. 5�a� for �=1.5. It is seen from the energy surface in Fig.
5�b� that an increase in u0 and a decrease in �0 result in u0 no
longer being a minimum. To confirm this, we consider the
matrix of second derivatives at a critical point of E. From Eq.
�5�, this can be written as

	��1 − Ga� �Gb

�Gb ��1 − Ga�

 ,

where we have defined �=�1=�2, Ga=�W11=�W22, and Gb
=��W12�=��W21�, and we have assumed W11=W22�0 and
W12=W21�0 due to recurrent excitation and reciprocal inhi-
bition, respectively. The eigenvalues of this matrix are


± = ��1 − Ga ± Gb� . �13�

When Ga+Gb�1, both eigenvalues are positive and the
critical point is a minimum. When Ga−Gb�1, both eigen-
values are negative and the critical point is a maximum. Fi-
nally, if Ga+Gb�1 and Ga−Gb�1, one eigenvalue is posi-
tive while the other is negative, so the critical point is a
saddle point. The critical point at u1=u2=u0 in Fig. 5�b� is
found to be a saddle point, with the direction of decreasing
energy given by the u1=−u2 line. This path of decreasing
energy means the equilibrium has exactly one unstable direc-
tion on the energy surface. The instability leads to a limit
cycle in Eqs. �7�–�10�, which is shown as a projection of
phase space onto u1 and u2 in Fig. 5�b� and as u1�t� and u2�t�

versus t in Fig. 5�c�. It is seen that u1 oscillates out of phase
with u2, so when the activity of population 1 is high, popu-
lation 2 has low activity and vice versa. This limit cycle
corresponds to the rivalry mechanism discussed in Sec. III A.

Decreasing � to �=1.2 in Fig. 6�a� increases both u0 and
�0 as the intersection point passes a local minimum in the
nullcline. The relevant critical point in Fig. 6�b� changes
from a saddle point to a maximum, with the second direction
of decreasing energy given by the u1=u2 line. The equilib-
rium now has two unstable directions on the energy surface.
Choosing any initial condition along this second unstable
direction, as long as it is not the equilibrium, leads to a
second limit cycle, as shown in Figs. 6�b� and 6�c�. It is seen
that u1 and u2 now oscillate in phase, corresponding to the
mechanism for in-phase oscillations discussed in Sec. III A.
The key point, however, is that the basin of attraction for this
second limit cycle consists only of those points satisfying
u1=u2 and �1=�2; all other points are attracted to the first
limit cycle. This is shown in Fig. 7, where we choose similar
conditions to Fig. 6, but now with the initial condition just
off the u1=u2 line. After initially oscillating in phase, u1 and
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FIG. 5. Dynamics of Eqs. �7�–�10� for �=1.5. In �a�, the inter-
section of Eq. �11� �solid line� and Eq. �12� �dashed line� is shown.
In �b�, a plot of Eq. �3� with �1=�2=�0 yields a saddle point at
u1=u2=u0. The dynamics given by u1�t� and u2�t� after neglecting
transient behavior is also shown �thick line�. In �c�, u1�t� �dashed
line� and u2�t� �solid line� versus t is shown.
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u2 eventually settle into out-of-phase oscillations, as in Fig.
5. The limit cycle for in-phase oscillations is therefore un-
stable, while that for out-of-phase oscillations is stable. The
reason is that any initial asymmetry in u1 or u2 leads to
asymmetry in �1 or �2 via Eqs. �9� and �10�, and subse-
quently triggers the rivalry mechanism described in Sec.
III A.

What is the role of this second limit cycle? When Ga
−Gb�1, oscillations are dominated by a saddle point on the
energy surface. The stable direction is given by the u1=u2
line, and choosing any initial condition satisfying u1=u2 and
�1=�2 leads to the equilibrium at �u0 ,�0�. Choosing any
other initial condition, on the other hand, leads to the limit
cycle for out-of-phase oscillations shown in Fig. 5. So phase
space is divided into two basins of attraction: one given by
all points satisfying u1=u2 and �1=�2 and one given by all
other points. When Ga−Gb�1, oscillations are dominated
by a maximum on the energy surface. The first basin of at-
traction now leads either to the limit cycle for in-phase os-
cillations shown in Fig. 6 or to the equilibrium if u1=u2
=u0. So, although the mechanism for in-phase oscillations
exists even when reciprocal inhibition is present, the relevant
basin of attraction is very small. This means in-phase oscil-
lations are unlikely ever to be observed in time series data,
found either numerically or experimentally.

Experimental measurements of binocular rivalry show
there is little correlation between successive high-activity du-
rations �5,25�. It is expected that including random noise in
Eqs. �7�–�10� will lead to this behavior, as it does in similar
deterministic models of rivalry �5�. Within the energy ap-
proach, it is clear that switching between different high-
activity states would then depend on the relative time scales
of adaptation versus activation over an energy barrier.

IV. NEURAL PATTERN FORMATION

Spatially nonuniform neural activity has been widely in-
vestigated in various neuronal models �for a recent review,
see Ref. �13�� and is thought to be important for phenomena
such as short-term memory �1,22�, visual hallucinations
�9–11�, cortical map formation �4,12�, and rate coding in
binocular rivalry �25�. In such models, it is generally as-
sumed that the neural connectivity has a characteristic spatial
range. Our purpose is to use an energy approach to investi-
gate patterns in a neuronal network with spatially distributed
connections. In this case we consider the continuum limit of
Eqs. �1�–�3�.

For a one-dimensional �1D� network and a translation-
invariant synaptic density W�x−x��, the continuum limit of
Eq. �1� leads to the replacements ui→u�x�, uj→u�x��, hi

→h�x�, and � jWij→�−�
� W�x−x��dx�, yielding

1

�

�u�x,t�
�t

= − u�x,t� + �
−�

�

W�x − x��S�u�x�,t��dx� + h�x� ,

�14�

where

S�u�x,t�� =
1

1 + exp− �u�x,t� − ��/��
. �15�

These equations describe a single neural population with
spatially distributed connections. The corresponding
Lyapunov function follows from the continuum limit of Eq.
�3� and is given by

E = −
1

2
�

−�

�

dx�
−�

�

dx�S�u�x��W�x − x��S�u�x���

+ �
−�

�

dx�
0

S�u�x��

S−1�Q�dQ − �
−�

�

dxh�x�S�u�x�� .

�16�

The replacements Si→S�u�x��, �i→�, and �i→� are also
used in Eq. �4�. In the following, we will mainly be con-
cerned with the properties of this Lyapunov function.

The structure of connections in many pattern-forming
neural models is assumed to include lateral inhibition, mean-
ing the connections are excitatory over short range and in-
hibitory over a longer range. The synaptic weight is often
then chosen to have the Mexican hat form

W�R� =
1

B��
�exp	−

R2

r1
2 
 − A exp	−

R2

r2
2 
� , �17�

where r1�r2, A�r1 /r2, and B=r1−Ar2. This function de-
scribes connections with W�R��0 for small R �short-range
excitatory coupling� and W�R��0 for larger R �long-range
inhibitory coupling�. We now investigate the stability and
interactions of spatially localized regions of high neural ac-
tivity in a continuum network with W�R� given by Eq. �17�.

A. Single soliton

Spatially localized regions of high neural activity, termed
solitons here, and interactions between solitons can be inves-
tigated using a variational energy. This is constructed by
choosing a variational form for u�x� in terms of one or more
collective coordinates, substituting it into Eq. �16� and per-
forming the integrals over x and x� to obtain an expression
that depends only on the collective coordinates. Minimizing
the variational energy with respect to the collective coordi-
nates yields stable equilibria.

The variational form we use for a single soliton is given
by an exact solution of Eqs. �14� and �15� in the limit as �
→0. This is constructed by integrating W�x−x�� over a high-
activity region of size m:

u�x� = u0 + �
−m/2

m/2

W�x − x��dx�, �18�

leading to a soliton of width m, centered at the origin, as
shown in Fig. 8�a�. Here, u=u0 is chosen to extremize E at
m=0. It was originally shown by Amari �22� that Eq. �18�
gives a stable equilibrium of Eqs. �14� and �15� in the �
→0 limit for a specific choice of m. More generally, we find
stable equilibria for ��0 by minimizing a variational energy
with respect to m.
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The variational energy following from Eqs. �16�–�18� is
shown in Fig. 8�b� and has three critical points: two local
minima and one local maximum. The minima are stable
equilibria at the center of two basins of attraction: one for the
uniform state m=0 and one for a stable soliton given by Eq.
�18� with m equal to m0�1.3. The maximum located at m
equal to mc�0.5 is an unstable equilibrium and forms the
basin boundary. The unstable equilibrium is also a nucleus of
critical size: a stable soliton will form when m�mc.

A stable soliton given by Eq. �18� represents a balance
between nonlinearity and dissipation. From Fig. 8�a�, it is
seen that u�x��� when mmc. In this case the first term in
Eq. �14� dominates and dissipation will cause the system to
relax towards the uniform state at m=0. However, when m
�mc, we find u�x��� over a region of size m and the second
term in Eq. �14� becomes significant. Short-range excitatory
coupling will stabilize a local region if m�mc. Long-range
inhibitory coupling increases the energy when m�m0, so the
activity remains localized.

B. Soliton interactions

Translational invariance of the synaptic density means
that many widely spaced solitons are also equilibria of Eqs.
�14� and �16�. However, interactions begin to play a role as
the soliton separation decreases. In Ref. �23�, it was found
that the Mexican hat form of lateral inhibition is not suffi-
cient to stabilize two-soliton solutions of Eq. �14� when a
Heaviside step function is used for S. Here, we show the
more general result that two-soliton solutions can be stable
when S is given by a sigmoid function.

Interactions between two solitons of equal width can be
investigated by defining a collective coordinate a as the dis-
tance between two solitons when a�m, and assuming

u�x� = u0 + �
−m/2

m/2

�W�x − x�� + W�x − a − x���dx�, �19�

as shown in Fig. 9�a� for fixed m and a. The corresponding
variational energy is shown in Fig. 9�b� for fixed m and
different values of �. Above a certain critical value of �, a
local energy minimum appears at a equal to a0�5.3. This

leads to a force of attraction between solitons, and bound
states consisting of two or more solitons spaced a0 apart
become stable. For small � the minimum at a0 vanishes and
bound states are no longer stable without the inclusion of
additional forces. An increase in the energy at small values
of a leads to a repulsive force that keeps solitons separated
from one another.

Interactions between solitons depend on the coupling term
in Eq. �16�, which is given by

Eint = − S�u�x��W�x − x��S�u�x��� �20�

and can be understood qualitatively in the following manner.
It is seen from Figs. 8 and 9 that an individual soliton con-
sists of a peak of high activity and two regions of low �or
minimum� activity. Let the high-activity region be described
by u�x� and the low-activity regions by u�x��. Interactions
between u�x� and u�x�� have W�R��0 due to the character-
istic range of excitation and inhibition, implying that Eint
�0 for interactions between these regions. Since S�u�x�� is
large and positive, one possibility for minimizing Eint is by
decreasing S�u�x���. This can be achieved by moving two
solitons together so their low-activity regions overlap, de-
creasing u�x�� and therefore decreasing S�u�x���. In the step
function limit �→0, S�u�x���=0 cannot be decreased any
further, so the energy is not minimized by moving solitons
together and no force of attraction is found. When solitons
become close enough such that W�R��0 for interactions be-
tween neighboring high-activity regions, the solitons begin
to repel each other, regardless of �.

It has previously been proposed that localized regions of
high activity may play a role in working memory �1,22�. In
this case, an elevated firing rate within a local region of the
cortex would be associated with the memory of a particular
event. The existence of bound states now demonstrates that
interactions between high-activity regions may need to be
taken into account if any of these local regions are close
enough together.

C. Soliton lattice

Lowering the firing threshold lowers the barrier to soliton
formation. This is shown in Fig. 10, where the energy surface
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FIG. 8. Energy of configurations given by Eq. �18� for different
values of m. In �a�, plots of u�x� are shown for the uniform state
�m=0�, unstable soliton �m�0.5�, and stable soliton �m�1.3� us-
ing r1=1, r2=2, and A=0.47. In �b�, the variational energy calcu-
lated using Eqs. �16�–�18� with �=2.1, �=1, and I=0 is shown.
E�0� is the energy at m=0.
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from Fig. 8 is plotted for different values of �. As � is low-
ered, the local maximum moves towards the minimum at
m=0, until they merge in a saddle-node bifurcation at �
�1.6. The equilibrium at m=0 then becomes unstable to
soliton formation, and solitons are generated
spontaneously—the nucleus of critical size mentioned previ-
ously now has zero width. More generally, a pattern-forming
instability �also known as a Turing instability� takes place at
�=�c when the critical point at m=0 goes from being a mini-
mum in E, to a saddle point in E, with the direction of de-
creasing energy corresponding to a deviation of nonzero
wave number.

1. Pattern-forming instability

The curvature of E at the critical point m=0 can be found
from the continuum limit of Eq. �5� evaluated at u=u0
�which is also the second variational derivative �21� of Eq.
�16��, yielding

� 	2E

	u�x�	u�x��
�

u=u0

= ��	�x − x�� − �W�x − x��� , �21�

where �=S��u0�. The eigenvalues 
k and eigenfunctions �k

describing the curvature of E then satisfy the following ei-
genvalue equation:

�
−�

�

dx���	�x − x�� − �W�x − x����k�x�� = 
k�k�x� . �22�

Assuming an eigenfunction of the form �k�exp�−ikx� in Eq.
�22� yields the eigenvalue


k = ��1 − �W̃�k�� , �23�

where W̃�k�=�−�
� W�R�e−ikRdR is the Fourier transform of

W�R�. For the Mexican hat form in Eq. �17�, W̃�k� has a
global maximum at k=kc�0. Lowering � causes � in Eq.
�23� to increase, until at �=�c it is found that 
k=0 for k
=kc, while 
k�0 for all other k.

Turing instabilities lead to spontaneous pattern formation
in a diverse range of systems and are responsible for patterns
ranging from animal coat markings to those of fluid convec-
tion cells �27,28�. Here, we show that one type of stationary
pattern resulting from a Turing instability is given by a soli-

ton lattice, a pattern also found in several condensed matter
systems �e.g., Refs. �30,31��. The energy approach is now
used to give the precise form of this soliton lattice.

Consider a multi soliton configuration of the form of Eq.
�19�. The energy from Eq. �16� can then be written as

E = − Ns�E , �24�

where Ns=L /a is the total number of solitons, a is the spac-
ing between each soliton, and L is the length of the region
under consideration, and where �E�0 is the energy of each
soliton, given by

�E = Esol + Ebind, �25�

where Esol=E�m=0�−E�m� and Ebind=E�a→��−E�a� have
been defined. The first expression gives the energy of a
single unbound soliton and is maximized at the equilibrium
soliton width m=m0. The second expression is the binding
energy of a single soliton at a distance a from each of its
neighbors. The key point is that Ebind will not necessarily be
maximized at a Turing instability; instead, the value of a
must be chosen to maximize both Ns and Ebind according to
Eq. �24�. In particular, it is seen in Fig. 9 that choosing a
below a certain critical value makes Ebind�0 due to the
short-range repulsion between neighboring solitons. How-
ever, the resulting increase in Ns may still lead to a minimum
of Eq. �24�—and therefore to a stable bound state, even
when �=0.

If the global maximum of W̃�k� is at k�2� /a0, where a0

is the value of a which minimizes Eq. �24�, then the number
of solitons will increase rapidly at �=�c due to a Turing
instability. This will eventually saturate at Ns=L /a0, and the
result is a regularly spaced lattice of solitons, as shown in
Fig. 11. According to Eq. �19�, the soliton lattice is com-
pletely specified by the connectivity function W�R�, the equi-
librium soliton width m0, and the equilibrium spacing be-
tween neighboring solitons a0. These last two quantities can
be found from minimizing Eq. �24�.

Spontaneous pattern formation has also recently been in-
vestigated in a continuum neuronal network consisting of
two populations �29�. In that case two different Turing insta-
bilities were identified, one leading to stationary patterns
such as those considered here, and the other to oscillating
patterns, but only when the time constant for inhibition takes
certain values �29�. Numerical simulations were used in Ref.
�29� to follow the nonlinear development of these patterns.
The single-population model analyzed here does not contain

0 0.5 1 1.5 2 2.5
−0.6

−0.4

−0.2

0

0.2

m

E
(m

)−
E

(0
)

θ=2.1

θ=1.9

θ=1.6
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values of �. The variational energy calculated using Eqs. �16�–�18�
with �=1 and I=0 is shown for �=2.1, 1.9, and 1.6.
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an oscillating Turing instability, since two or more popula-
tions are necessary for this. However, the model given by
Eqs. �14� and �15� is adequate for illustrating the usefulness
of the energy approach and has allowed us to find a param-
etrized nonlinear solution, yielding insights into the nonlin-
ear properties of patterns.

2. Effect of noise fluctuations

Crystal lattices often contain vacant sites due to thermal
fluctuations �32�. These vacancies allow atoms to diffuse
from one part of a crystal to another �32�. In our continuum
network, fluctuations due to noise in the neural activity play
an analogous role to thermal fluctuations in crystals—
namely, creating soliton vacancies by removing solitons from
the soliton lattice. The energy required to remove a single
soliton from the lattice is given by �E from Eq. �25�. When
noise fluctuations are present, this energy can be offset by the
number of extra states which are created—that is, �E is bal-
anced by T�S due to the entropy �S of mixing of solitons
and soliton vacancies. Using arguments from point defects in
crystals �32�, the equilibrium number of lattice vacancies Nv
is then

Nv = Ns exp�− �E/kBT� , �26�

where kBT is the strength of noise fluctuations. Similar argu-
ments are used in Ref. �12� to find the “temperature” at
which structural singularities in cortical maps begin to anni-
hilate each other.

Soliton lattice vacancies allow solitons to be redistributed
on the lattice via processes analogous to “consecutive slip-
ping” in crystals. This can lead to high neural activity be-
coming concentrated in particular regions of the network,
such as at sites of maximum stimulus. According to Eq. �16�,
the energy due to a nonuniform stimulus h�x� is given by

Estim = − �
−�

�

dxh�x�S�u�x�� �27�

and is minimized when the overlap between the firing rate
S�u�x�� and the stimulus h�x� is maximized. An example in-
volving solitons is shown in Fig. 12.

When noise fluctuations satisfy kBT��E, the number of
lattice vacancies becomes large and long-range order in the
neural activity decreases. In this case a soliton liquid or gas
may provide a more appropriate description of the neural
activity.

V. SUMMARY AND DISCUSSION

In this paper, we have presented an energy approach to
understanding the dynamics of activity in neuronal networks.
The purpose was to find an intuitive way of understanding
the neural dynamics and to uncover new results which would
be more difficult to show using standard methods. In order to
illustrate this approach we considered a discrete network of
two neural populations with reciprocal inhibition and slow
adaptation and a spatially continuous network consisting of a
single population with lateral inhibition. Important nonlinear
phenomena were investigated, including limit cycles, soli-
tons, and pattern formation.

The main results from our approach are as follows: �i� In
a two-population network with reciprocal inhibition and slow
adaptation, two limit cycles were discovered—one where the
activities of both populations oscillate out of phase, as in
rivalry, and one where they both oscillate in phase. The en-
ergy approach was used to find the dynamical mechanisms
for oscillations, as well as the point of bifurcation and basin
of attraction of each limit cycle. This extends the work of
Ref. �18� for adaptation in a single neural population to ad-
aptation in two interacting populations. �ii� In a continuum
network with lateral inhibition, stable equilibria were found
for a single soliton and for bound states of two or more
solitons when the firing rate was described by a sigmoid
function. Bound states become stable when moving two soli-
tons together minimizes the Lyapunov function, a result of
decreasing activity in regions between peaks of high activity.
This finding extends the results of Ref. �23� for a step-
function firing rate, where no stable bound states were found
using Mexican hat—type lateral inhibition. �iii� At the
pattern-forming instability, a nonlinear solution of the dy-
namical equations was found to be given by a soliton lattice,
which was completely characterized by the equilibrium soli-
ton width and the equilibrium spacing between neighboring
solitons. It was shown how to calculate these quantities in
terms of an energy minimization. An analogy with the ther-
mal creation of lattice vacancies in crystals was also made,
leading to a mechanism for liberating solitons from the
lattice—decreasing long-range order and generating spatially
inhomogeneous activity within the network.

The advantages of an energy approach for understanding
dynamics in neural networks include visualization of the sta-
bility and topology of equilibria—and therefore, prediction
of global dynamics in terms of trajectories which tend to-
wards minimums of the energy; the use of variational tech-
niques for finding equilibria; and the construction of analo-
gies with other physical systems—including the treatment of
fluctuations due to noise using results from statistical me-
chanics. Limitations include the treatment of asymmetric
networks with short timescale dynamics which does not
match any known Lyapunov function; visualization of en-
ergy surfaces in high dimensions—an appropriate choice of
collective coordinates may not always be possible; and
evaluation of the energy generally requires a double sum or
integral to be performed.

Finally, it is worth noting that many of the results dis-
cussed here can be qualitatively reproduced using alternative
energy expressions to Eq. �3�. One example is the energy
given by
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FIG. 12. Solitons �solid line� at a site of maximum stimulus
�dashed line�.
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E = − �
i,j

�ui − �i�WijS�uj� +
1

2�
i

ui
2 − �

i

hiui. �28�

Each population with Wii�0—i.e., each population with re-
current excitatory connections—can be bistable �18�, with a
stable equilibrium at high and low activities. The energy
given by Eq. �28� is then equivalent to a set of double-well
potentials. Such potentials have been thoroughly investigated

in physics and are capable of describing a diverse range of
phenomena. A simple interpretation of this type has not been
found for the more complicated Lyapunov function due to
Hopfield.
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